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ABSTRACT
The 400 MHz 'H NMR spectra of the cardiac

1, have been studied

antiarrhythmic, mexiletine,
with different chiral solvating agents (CSA) to
obtain a very promising method for direct
determination of enantiomeric excess (e.e.) with
limited amounts of 1. The methods included the use
of B-cyclodextrin (B-CD), y-cyclodextrin (y-CD), a-
methoxy-a— (trifluoromethyl)phenylacetic acid
(MTPA), and 2,2,2-trifluoro-1-(9-anthryl)ethanol
(TFAE). Use of TFAE in CDCl; with the free base of
1 appeared to give the best results, with
enantiomeric shift differences observed for the
signals of the sidechain methyl, CH.CH, and the
aryl methyls.

INTRODUCTION

Mexiletine, 1-(2,6-dimethylphenoxy)-2-
propanamine, 1, has antiarrhythmic activity. Both
enantiomers have been obtained as (R)-(-)-1 and
{(8)-(+)-1 and the pharmacokinetics of the
enantiomers in humans have been studied; the
stereoselective disposition of 1 has been reported
(1-4) as well as aspects of stereospecific binding
(5,6). Various analytical techniques have been

applied for enantiomeric excess (e.e.)
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CH,
CH
OCH,CHNH,
CH, 1

determination of ;, including: (a) high performance
liquid chromatography (HPLC) of diastereomers after
use of a chiral derivatizing reagent (1) or with a
chiral stationary phase (CSP) (2,4,6-8): (b)
capillary column gas chromateography (GC) with a CSP
(9). All of these analyses required prior
derivatization of 1 for subsequent chromatography,
either with achiral (2,4,6-9) or chiral (1)
reagents. In addition, one non-chromatographic
method has been described, based on 'H NMR
spectroscopy using chiral lanthanide shift reagents
(LSR) (10). The NMR LSR technique has the
advantage of being a true direct analysis, with no
separate derivatization step required. However,
because this earlier NMR LSR method employed a low
field 60 MHz spectrometer, relatively large amounts
of sample were required, ca. 40-60 mg. It was
therefore of interest to extend the NMR studies for

direct e.e. determination of 1 using a higher field
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(400 MHz) NMR spectrometer for analyses at the
level of a few milligrams or less. The techniques
employed in this present work were based on the use
of chiral solvating agents (CSA). 1In addition to
elaboration of a'direct NMR method using CSA for
potential e.e. determinations of 1, a non-racemic
sample of 1 was analyzed to determine the sense of
induced magnetic nonequivalence for the two
enantiomers.

NMR methods for e.e. determinations based on
chiral solvating agents have been reviewed (11,12).
The most attractive of these CSAs appeared to be
based on the use of a trifluoromethylarylcarbinol
to form short-lived diastereomeric solvates with
the substrate. The carbinol CSAs, being more
acidic than related amine CSAs, were considered to
be more appropriate for use with a basic substrate
such as 1 (13-15). Thus, studies were performed
using (~)-2,2,2~trifluoro-1-~(9-anthryl)ethanol,
TFAE (14).

In addition, parallel studies were explored
using other CSA techniques. Cyclodextrins have
been found useful in allowing NMR discrimination of
pharmaceutical enantiomers via formation of the

inclusion complexes (16). Both g-cyclodextrin (8-
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CD) and y-cyclodextrin (y-CD) were employed to
explore different cavity sizes. Lastly,‘a—methoxy—
a—-(trifluoromethyl)phenylacetic acid, MTPA, was
briefly examined as a chiral complexing agent for
1. MTPA amides and esters have been used as
covalently bound diastereomeric derivatives of
amines and alcohols, respectively, to allow e.e.
determination by NMR or chromatography (17,18). We
considered a modification using MTPA as a
complexation reagent via salt formation (19).

EXPERIMENTAL

All spectra were acquired on a Varian VXR-~-400S
FT-NMR spectrometer with a 'H observe frequency of
399.952 MHz, using a Smm switchable 'H/broadband
(80-160 MHz) probe, thin-walled NMR tubes and a 25°
probe temperature. Typical spectrometer parameters
were: 30° pulse flip angle, 5s pulse repetition
time, 3s acguisition time, 32 acquisitions, 4317.8
Hz spectral width, 25984 datapoints (32 bits), and
0.05 Hz exponential line broadeﬁing. Solutions
were prepared in 1.0 + 0.1 ml CDCl; (unless
otherwise noted) and used 0.03% tetramethylsilane
{(TMS) as internal reference (é§ = 0.000). For
samples requiring the free base of 1, the

hydrochloride salts (1-HCl) were dissolved in a few
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ml H,0, and 2M NaOH was added to give pH ca. 12.
After extraction with four portions CHCl;, the
combined CHCl; extracts were dried (anhyd. K,CO;)
and the solvent evaporated. The residue was then
taken up in CDCl; and dried (K,CO;). Evaporation of
the solvent gave the free base, 1, which was used
directly for NMR studies. Commercial reagents were
used as supplied without further purification.
Deuterium oxide (29.8 atom % D) and
deuterochloroform (99.8 atom % D, containing 0.03%
TMS) were from Janssen Chimica, Belgium; mexiletine
samples were from Boehringer, Germany; (R)-(-)-TFAE
(98%), MTPA, and é-cyclodextrin were from Aldrich
Chemical Co., Milwaukee WI, USA; pB-cycledextrin was
from Sigma Chemical Co., USA. For the "“spiked" run
of non-racemic 1 with (R)-(-)~TFAE, a portion of
(-)=-1-HCl was converted to the free base (as
described above) which was added to a CDCl,
solution of racemic free base 1. Chemical shifts
are reported in ppm; where enantiomeric shift
differences were observed, the average chemical
éhift for the two antipodes is given.

RESULTS AND DISCUSSION

When increments of (~)-TFAE were added to a

solution of racemic mexiletine free base in CDCl,
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Fig. 1. Variation in enantiomeric shift
difference, A§ (in ppb), with molar ratio
(TFAE]/[1] for a solution'of 1 ca. 0.0305 molal in
CDCl; at 25°. Data is shown for the CH;CH signal.

at 25°, enantiomeric shift differences (A§) were
observed for both the CH,CH methyl doublet signals
and for the methyl singlet signals of the 2,6-
dimethylphenyl moiety. The Aé magnitudes were
appreciably greater for the former signal. The
variation of 4§ with molar ratio of (~)~TFAE/1l for

the CH,CH resonance is shown in Figure 1 and



03:53 30 January 2011

Downl oaded At:

1374 ABOUL-ENEIN, ROTHCHILD, AND SINNEMA

| j | 1
A )/ &/J | el /,lr‘.\ §
S [ — N
5 11 108 £ 8 81
(+)} )}
c "
It S —
s l/\ 6 204 202 A
//\ /\A N - / \\\
=) \v// \\_,/W = K+ﬁv/04\
- . —
58 83 £ 205 203

Fig. 2. Expansions of the 400 MHz 'H NMR of 1 with
added (-)-TFAE. For each trace, the following is
specified: observed nucleus; average chemical shift
(6, ppm); enantiomeric shift difference (A6, Hz);
molar ratio of (-)-TFAE to total 1. (a) CH,CH;
1.096 ppm; 3.56 Hz; 0.744; (b) CH,CH; 0.830 ppm;
8.70 Hz; 7.88; (c) (CH;),CHs; 2.030 ppm; 4.8 Hz;
7.88; (d) CH,CH; 0.847 ppm; 8.44 Hz; (e) (CH;),C.Hy;
2.042 ppm; 3.6 Hz. Note: traces (d) and (e) were
obtained from solution of Fig. 2b, above, by
spiking with (-)-1.

representative speétral traces in Figure 2. The
development of A§ is accompanied by slight upfield
shifts for both the CH,CH and aryl methyl signals.

A non-racemic sample of 1 free base was prepared by
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"spiking" racemic material with (-)-1, and this
mixture was subjected to treatment with (-)~TFAE.
Under these conditions, the lower field doublet of
the CH,CH signals was enhanced, i.e., the doublet
shifted upfield more slowly must be due to (-)-1.
Thus, for the sidechain CH,CH with (-)-TFAE added,
(-)-1 has a downfield sense of magnetic
nonequivalence (see Fig. 2).

In contrast, the higher field aryl methyl
signal was enhanced for the spiked sample, so that

an upfield sense of magnetic nonequivalence results

" for (~)-1 with added (~)-TFAE. The fact that

opposite senses of magnetic nonequivalence are seen
for the CH,CH versus the aryl CH; signals means
that the enantiomeric shift differences may reflect
not simply a preferential binding of one of the
enantiomers of 1 to the TFAE, but also geometric
differences of the locations of the marker nuclei
in the diastereomeric solvates. Finally, we note
that the unequal peak intensities for the aryl
methyl signal in non-racemic 1 with (-)-TFAE
confirms that the observed peak separations result
from true enantiomeric shift differences (rather
than from hypothetically noneqguivalent methyl
groups on the aromatic ring due to slow rotation of

the ring on the NMR timescale).
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Even relatively small amounts of (-)-TFAE can
be effective. With racemic 1 (0.0305 molal in
CDC1l;) and a molar ratio [TFAE]/[1] of 0.744,
average A§ of 3.56 Hz (9.2 ppb) was seen for the
CH,CH signals. Although each enantiomer's doublet
was overlapped, the average valley heights between
peaks of each antipode (i.e., the two low field
lines or the two high field lines) was just over
10%.

For racemic 1 in CDCl; at a molar ratio of
[TFAE]/[1) of ca. 7.88 (the.highest examined), a A$
magnitude of about 12 ppb was observed for the
aromatic methyl signal versus 21.7 ppb for the
sidechain CH,CH. Under our conditions, the valley
height between the aryl methyl signals was about
11% of the average peak heights from the two
enantiomers, as shown in Fig. 2. Since the CH,CH
signal is a 3H intensity doublet (in the absence of
CSA) and the ArCH; a 6H singlet, the lines of the
aromatic methyl signals are each four times as
intense as those for the sidechain methyl.
(Actually, the full peak height advantage of the
aromatic methyl signal is not realized since its

linewidth is greater than for the CH,CH peaks,

presumably caused by long-range coupling to aryl
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protons). Particularly in cases where only very
small amounts of 1 are available, e.e.
determinations using the aromatic methyl signals
may be preferred despite their smaller AS§
magnitude. Alternativé approaches to the direct
e.e. determination using TFAE and the CH,CH signals
are described below.

Enantiomeric excess determinations for some
pharmaceuticals by NMR of cyclodextrin inclusion
complexes in D,0 appeared to be a promising
technique (16). We examined racemic 1 as its HC1
salt in D,0 using B-CD as CSA. The limited success
may partly reflect the limited water solubility of
B-CD (20). The largest Aé magnitudes were again
found for the sidechain methyl of 1, CH,CH. For
example, with 1.09 mg racemic 1-HCl in 1.0 ml D,0O,
observed average A§ values were only 2.68 Hz (6.7
ppb) with 28.4 mg F-CD added; using 56.8 mg S-CD,
the observed A§ was actually less: 2.19 Hz (5.5
ppb). (The actual amount of added S-CD is nominal
since both of these solutions required filtration.
Solutions with lower levels of the CSA were
homogeneous but AS magnitudes were smaller). Thus,
the A§ magnitudes were much smaller than the

vicinal coupling constant and the doublets for each



03:53 30 January 2011

Downl oaded At:

1378 ABOUL-ENEIN, ROTHCHILD, AND SINNEMA

enantiomer's CH;CH signal were severely overlapped.
The valley heights between adjacent lines from the
two antipodes were quite high, about 43% and 48%,
respectively, for the samples noted above with 28.4
and 56.8 mg of added B-CD. No discernible Aé§ was
seen for the aryl methyls at any level of this
cyclodextrin CSA. Very small downfield shifts were
induced for both of the methyl signals with added
B-CD.

We considered the possibility that the 2,6-
dimethylphenyl moiety of 1 was toc large to be
fully accommocdated within the hydrophobic interior
of the F-CD cavity. Examination of Dreiding models
suggested that ca. 6.68 would be needed for the
dimethylphenyl group based on the distance between
the methyl groups (21). The cavity diameter for g8-
CD has been estimated at 6.0-6.5& (20) with 7.8 &
maximum diameter. If optimal enantiomeric shift
difference is dependent upon the substrate's chiral
center and analytical "reporter" nuclei both being
close to the chiral hydroxyl group environment at
the mouth of the CD cavity, this might require a
greater penetration into the CD cavity by the
hydrophobic dimethylphenyl moiety of 1 than

physical size allows. In contrast, y-CD has a more
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spacious cavity, with estimated diameter of 7.5-8.3
R and 9.5 & maximum diameter (20). This would
certainly allow full penetration by the hydrophobic
portion of 1. In addition, y-CD has more than
twelve times the water solubility of 8-CD, 23.2
versus 1.85 g/100 ml at 25° (20), and it was
thought that this might prove advantageous by
allowing higher molar ratios of CSA:1. However,
when y-CD was tried, A6 values were far inferior to
those seen with B-CD. It may be that the fit of 1
in the larger cavity was simply too floppy, and
that 1 in the smaller cavity of g-CD provided a
more desirable tighter fit, even though the
dimethylphenyl moiety may not have been fully
within the cavity; this must be considered
speculative.

Use of MTPA as a CSA for NMR e.e.
determination of amines has been described (19).
We attempted to examine racemic 1 free base in
CDCl; with added (+)-MTPA. In our hands, presumed
salt formation led to precipitation from the
solution, preventing spectral acquisition. This
approach was not pursued further.

Of the different CSAs tried, TFAE appeared

most useful. Using this reagent, we examined the
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Fig. 3. Spectral deconvolutions of traces from
Fig. 2a and Fig. 2b, above. For each
deconvolution, (a) and (b), respectively, the
uppermost trace is the actual spectrum, the center
trace is the full fit, and the bottom trace shows
the individual component plots. See caption for
Fig. 2 for sample conditions.
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use of the CH,CH doublet signals (which exhibited
the largest Aé values) with the ancillary technique
of spectral deconvolution by means of the standard
Varian software, applying Lorentzian line-shapes.
Deconvoluted spectra are shown in Figure 3. This
method appeared to offer considerable promise for
e.e. quantitation of the doublet signals (which are
not baseline resolved). The deconvolutions appear
to be excellent fits to the experimental spectra
and suggest the possibility of e.e. determinations
with substantially less TFAE than would be
necessary for complete separation of the doublet
signals. Homonuclear decoupling via selective
irradiation of the methine CH,CH to collapse the
methyl doublets to singlets was also considered.
But experimentally, complete decoupling was not
achievable due to the extreme widths of the
multiplets caused by extensive couplings and
differential induced chemical shifts.
CONCLUSIONS

Different CSAs have been examined for use in
the direct e.e. determination of mexiletine. The
best results (largest A§ magnitudes and smallest
valley heights) were achieved with 1 free base in

CDC1l; using (-)-TFAE, based on the CH,CH signal.
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The (-) enantiomer of 1 exhibited a downfield sense
of magnetic nonequivalence. We estimate that, for
practical applications, a single milligram each of
mexiletine sample and (-)-TFAE are sufficient for
e.e. analysis with a 400 MHz (or higher frequency)
spectrometer. Good results were also seen using
the aryl methyl signals. Spectral deconvolution
promised even greater potential. Use of B-CD in
D,0 with 1-HCl was inferior, with smaller A¢§
magnitudes and higher valley heights; y—-CD was
still less effective. Use of MTPA with 1 free base
in CDCl, caused precipitation and could not be
applied.
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